Linux之platform平台设备驱动详解

bangongJIAO1@c 发布于 2025-11-24 阅读(11)

在 Linux 设备驱动模型中,总线(Bus)是连接处理器与设备的桥梁,而 Platform 总线是一种虚拟总线,专门用于管理那些不依赖于物理总线(如 I2C、PCI、USB 等)的嵌入式设备(如 SoC 内部的硬件外设)。

所以platform 总线的主要作用就是统一设备模型,将未挂载到物理总线的设备纳入统一的设备驱动框架。

通过 platform_bus_type 虚拟一条总线,使得这些设备可以像物理总线设备一样被管理。

platform驱动注册

结构体是struct platform_driver,主要包含probe、remove等接口。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
struct platform_driver {
    int (*probe)(struct platform_device *);
 
    /*
     * Traditionally the remove callback returned an int which however is
     * ignored by the driver core. This led to wrong expectations by driver
     * authors who thought returning an error code was a valid error
     * handling strategy. To convert to a callback returning void, new
     * drivers should implement .remove_new() until the conversion it done
     * that eventually makes .remove() return void.
     */
    int (*remove)(struct platform_device *);
    void (*remove_new)(struct platform_device *);
 
    void (*shutdown)(struct platform_device *);
    int (*suspend)(struct platform_device *, pm_message_t state);
    int (*resume)(struct platform_device *);
    struct device_driver driver;
    const struct platform_device_id *id_table;
    bool prevent_deferred_probe;
    /*
     * For most device drivers, no need to care about this flag as long as
     * all DMAs are handled through the kernel DMA API. For some special
     * ones, for example VFIO drivers, they know how to manage the DMA
     * themselves and set this flag so that the IOMMU layer will allow them
     * to setup and manage their own I/O address space.
     */
    bool driver_managed_dma;
};

驱动注册接口是platform_driver_register,主要是把bus配成platform_bus_type后调用driver_register注册。

代码示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
int zsl_drv_probe(struct platform_device *dev)
{
    struct property *pp = NULL;
 
    printk(KERN_INFO "%s: \n",__func__);
 
    dump_stack();  // 打印堆栈
 
    return 0;
}
 
int zsl_drv_remove(struct platform_device *dev)
{
    printk(KERN_INFO "%s: \n",__func__);
    return 0;
}
 
struct platform_driver zsl_drv =
{
    .driver =
    {
        .name = "zsltest",         
    },
      
    .probe = zsl_drv_probe,
    .remove = zsl_drv_remove,
};

再使用platform_driver_register(&zsl_drv)注册这个驱动。

platform设备注册

结构体是struct platform_device,主要包含probe、remove等接口。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
struct platform_device {
    const char  *name;
    int     id;
    bool        id_auto;
    struct device   dev;
    u64     platform_dma_mask;
    struct device_dma_parameters dma_parms;
    u32     num_resources;
    struct resource *resource;
 
    const struct platform_device_id *id_entry;
    /*
     * Driver name to force a match.  Do not set directly, because core
     * frees it.  Use driver_set_override() to set or clear it.
     */
    const char *driver_override;
 
    /* MFD cell pointer */
    struct mfd_cell *mfd_cell;
 
    /* arch specific additions */
    struct pdev_archdata    archdata;
};

注册接口是platform_device_register,主要是把设备属性填充后,后调用device_add注册。

代码示例:

1
2
3
4
5
6
7
8
struct platform_device zsl_dev =
{
    .name = "zsltest",
    .dev =
    {
        .release = zsl_dev_release,
    },
};

再使用platform_device_register(&zsl_dev)注册这个设备,其中zsl_dev里的name和zsl_drv的name保持一样,才能让platform device和platform driver匹配上,从而调用zsl_drv.probe。

跟platform驱动注册配套使用后,运行打印如下,可以看到zsl_drv.probe会被调用到。

运行结果:

  • 先注册dev,再注册drv

  • 先注册drv,再注册dev

设备树

支持设备的内核里,更推荐使用设备树的方式,而不是platform设备注册的方式。

去掉zsl_dev设备的注册代码,在zsl_drv变量里增加.of_match_table = zsl_of_match,并且zsl_of_match表里增加.compatible = "rockchip,zslzsl",然后在设备树里增加以下代码。

保持两边的compatible一致,并且status是okay的。

这样就会调用zsl_drv.probe,并且可以拿到设备树里的属性内容。

1
2
3
4
5
zsl: zsl {
       compatible = "rockchip,zslzsl";
       status = "okay";
       testdata = "test";
};

如下修改zsl_drv_probe接口,增加拿testdata属性的代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
int zsl_drv_probe(struct platform_device *dev)
{
       struct property *pp = NULL;
 
       printk(KERN_INFO "%s: \n",__func__);
 
       pp = of_find_property(dev->dev.of_node, "testdata", NULL);
       if (pp)
              printk(KERN_INFO "%s: %d:%s \n",__func__,pp->length,(char *)pp->value);
 
       dump_stack();  // 打印堆栈
 
    return 0;
}

编译运行后如下,可以看到zsl_drv.probe会被调用到,并且能拿到设备树里的testdata属性。

Platform驱动和设备的关系

根据堆栈打印跟踪代码,调用调用关系如下

1
2
3
4
5
6
7
8
9
10
platform_driver_register
    driver_register
        bus_add_driver  
            klist_add_tail
            driver_attach
                driver_match_device(struct device *dev, void *data)=platform_match(struct device *dev, struct device_driver *drv) //找dev
                driver_probe_device
                    really_probe
                        dev->bus->probe=platform_probe
                            drv->probe=zsl_drv_probe

Driver注册时通过bus_add_driver将driver加入总线(klist_add_tail到总线的driver列表),触发driver_attach,遍历总线的device列表,通过platform_match匹配已有设备。

基本就是按顺序对设备树、id_table name的字符串匹配。匹配成功后,通过really_probe调用总线默认的platform_probe,最终执行driver的probe函数。

1
2
3
4
5
6
7
8
9
10
11
12
platform_device_register
    platform_device_add
        device_add
            bus_probe_device
                device_initial_probe=__device_attach
                    __device_attach_driver
                        driver_match_device(struct device *dev, void *data)=platform_match(struct device *dev, struct device_driver *drv)  //找drv
                        driver_probe_device
                            really_probe
                                dev->bus->probe=platform_probe
                                    drv->probe=zsl_drv_probe
            klist_add_tail

Device注册时通过device_add将device加入总线(klist_add_tail到总线的device列表)触发bus_probe_device,遍历总线的driver列表,通过platform_match匹配已有驱动,匹配成功则调用driver的probe函数。

这种双向注册机制确保了无论driver和device的注册顺序如何,都能正确触发匹配和初始化。


发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。